Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunother ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38562119

RESUMO

SUMMARY: T-cell-directed cancer therapies such as T-cell-engaging bispecifics (TCBs) are commonly associated with cytokine release syndrome and associated clinical signs that can limit their tolerability and therapeutic benefit. Strategies for reducing cytokine release are therefore needed. Here, we report on studies performed in cynomolgus monkeys to test different approaches for mitigating cytokine release with TCBs. A "priming dose" as well as subcutaneous dosing reduced cytokine release compared with intravenous dosing but did not affect the intended T-cell response to the bispecific. As another strategy, cytokines or cytokine responses were blocked with an anti-IL-6 antibody, dexamethasone, or a JAK1/TYK2-selective inhibitor, and the effects on toxicity as well as T-cell responses to a TCB were evaluated. The JAK1/TYK2 inhibitor and dexamethasone prevented CRS-associated clinical signs on the day of TCB administration, but the anti-IL-6 had little effect. All interventions allowed for functional T-cell responses and expected damage to target-bearing tissues, but the JAK1/TYK2 inhibitor prevented the upregulation of activation markers on T cells, suggesting the potential for suppression of T-cell responses. Our results suggest that short-term prophylactic dexamethasone treatment may be an effective option for blocking cytokine responses without affecting desired T-cell responses to TCBs.

2.
Virology ; 488: 28-36, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26590795

RESUMO

Lymphocryptoviruses such as Epstein-Barr virus (EBV) cause persistent infections in human and non-human primates, and suppression of the immune system can increase the risk of lymphocryptovirus (LCV)-associated tumor development in both human and non-human primates. To enable LCV infection as a non-clinical model to study effects of therapeutics on EBV immunity, we determined the genomic DNA sequence of the LCV from cynomolgus macaque, a species commonly used for non-clinical testing. Comparison to rhesus macaque LCV and human EBV sequences indicates that LCV from the cynomolgus macaque has the same genomic arrangement and a high degree of similarity in most genes, especially with rhesus macaque LCV. Genes showing lower similarity were those encoding proteins involved in latency and/or tumor promotion or immune evasion. The genomic sequence of LCV from cynomolgus macaque should aid the development of non-clinical tools for identifying therapeutics that impact LCV immunity and carry potential lymphoma risk.


Assuntos
DNA Viral/química , DNA Viral/genética , Genoma Viral , Lymphocryptovirus/genética , Lymphocryptovirus/isolamento & purificação , Macaca fascicularis/virologia , Animais , Ordem dos Genes , Dados de Sequência Molecular , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Sintenia
3.
J Immunotoxicol ; 11(1): 35-43, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23461640

RESUMO

A number of immunomodulatory therapeutics increase the risk of disease associated with latent herpesviruses such as cytomegalovirus (CMV) and Epstein-Barr virus (EBV), a member of the lymphocryptovirus (LCV) family that infects humans. The diseases associated with loss of immunity to these viruses can have major impacts on patients as well as on the commercial viability of the immunomodulatory therapeutics. In an effort to develop non-clinical methods for measuring effects on anti-viral immunity, we have developed an interferon (IFN)-γ enzyme-linked immunosorbent spot (ELISPOT) assay to quantify the number of CMV or LCV-reactive T-cells in peripheral blood of cynomolgus macaques. After optimization of various parameters, the IFN-γ ELISPOT assay was characterized for specificity, intra-assay, monkey-to-monkey, and longitudinal variability and sensitivity to immunosuppression. The results show that nearly all animals have detectable responses against both CMV and LCV and responses were derived from T-cells specific to the virus of interest. Analyses of variability show assay reproducibility (≤23% CV), and that variability over time in anti-viral responses in individual animals (larger for LCV than for CMV) was ∼2-fold in most animals over a 3-month time period, which is predicted to allow for detection of drug-induced changes when using group sizes typical of non-clinical studies. In addition, the IFN-γ ELISPOT assay was capable of detecting decreases in the numbers of CMV and LCV reactive T-cells induced by immunosuppressive drugs in vitro. This assay may allow for non-clinical assessment of the effects of immunomodulatory therapeutics on anti-viral T-cell immunity in monkeys, and may help determine if therapeutics increase the risk of reactivating latent viral infections.


Assuntos
Citomegalovirus/imunologia , ELISPOT/métodos , Infecções por Herpesviridae/imunologia , Imunoterapia/métodos , Lymphocryptovirus/imunologia , Linfócitos T/imunologia , Animais , Antígenos Virais/imunologia , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Imunidade , Interferon gama/metabolismo , Ativação Linfocitária , Macaca fascicularis , Variações Dependentes do Observador , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...